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The first examples of low temperature N-oxy-3-aza Cope rearrangements, leading to functionalised
allenes are described, where the Z-configuration of the enaminic double bond in the rearranging system
proves critical.
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With the decrease in the availability of fossil fuels and the
necessity to guarantee the sustainability of life in the planet, chem-
ists’ attention has been increasingly focused in low and room tem-
perature reactions that can provide access to functionalised
molecules with a minimum of energy expenditure, and a maxi-
mum of atom economy.1,2 Among [3,3]-sigmatropic rearrange-
ments the 3-aza Cope (also known as the 3-aza Claisen)
rearrangement is especially flexible for the different types of mol-
ecules that it can lead to.3,4 The caveat for its wider use resides in
its need for high temperatures and prolonged reaction times, asso-
ciated with sometimes modest yields. We report in this Letter an
N-oxy-3-aza Cope rearrangement occurring at or below room
temperature, which is gated by the configuration of the rearrang-
ing N-oxy-enaminic double bond, and which leads to functional-
ised oxime-allenes.5

The required hydroxylamine derivatives 4 (R1,R2 = H) could be
routinely obtained from the O-substituted hydroxylamines 1 by
propargylation of the corresponding N-Boc derivatives6 2 followed
by deprotection of 3 with TFA (Scheme 1, method a), whereas by
adapting Imada procedure7 (Scheme 1, method b) compounds 4
(R1,R2 – H) were easily made available from the corresponding
ll rights reserved.
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tert-propargyl acetate. Next they were added to an activated acety-
lenic sulfone and the products were analysed. For example addi-
tion of 4a to the acetylenic p-toluylsulfone8 in DCM at rt gave
rise after 60 h to allene 6a in 95%, the only other product detected
being enamine E-5a in 5%. The allene showed the characteristic IR
absorption at 1954 cm�1 and a 13C NMR high chemical shift at d
211.5 for the allene carbon.9 The results obtained with other
hydroxylamine derivatives are summarised in Table 1. Good to
excellent yields of functionalised allenes are found in reactions
where the hydroxylamine oxygen substituent is tertiary and bulky
[e.g., adamantyl, tert-butyl, 1,1-dimethyl-3-phenylpropyl and
1-methyl-cyclohexyl], or is attached to a tertiary silyl group as in
Table 1, entries (Z) 1, 8, 11–13. Similar results are obtained when
the hydroxylamine derivatives are disubstituted in the a-carbon
of the propargyl [entries (Z) 2, 7, 9, 10], a marked decrease being,
however, observed when the disubstitution is achieved through a
spiro carbon, by incorporation of a six- or specially a five-mem-
bered ring [entries (Z) 5, 6]. When the triple bond of 2 bears a ter-
minal substituent (entries 3, 4) no allene product is obtained at rt,
the only product isolated being the unrearranged E-enamine Mi-
chael adduct E-5. The obtention of allenes 6 can be rationalised
by invoking a sigmatropic 3-aza Cope rearrangement, as shown
in Scheme 2, through either a zwitterionic intermediate10 such as
Z-5A or a neutral enaminic Z-5.

In order to detect possible intermediates the reactions were fol-
lowed by 1H NMR in CD2Cl2. Immediately after addition of 4a to the



a: R1 = adamantyl ; R2,R3,R4 = H
b: R1 = adamantyl ; R2,R3 = Me; R4 = H
c: R1 = adamantyl ; R2,R3 = H; R4 = Me
d: R1 = adamantyl ; R2,R3 = H; R4= Et
e: R1 = adamantyl ; R2,R3 = CH2(CH2)3CH2; R4 = H
f: R1 = adamantyl ; R2,R3 = CH2(CH2)2CH2; R4 = H
g: R1 = adamantyl ; R2 = Me; R3 = Et; R4 = H
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l: R1 = SiMe2CMe3; R2,R3,R4 = H
m: R1 = SiPh2CMe3; R2,R3,R4 = H
n: R1 = benzyl; R2,R3,R4 = H

Scheme 1.
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acetylenic sulfone enamine Z-5 is formed in a fast reaction, and this
intermediate then suffers the rt rearrangement to yield allene 6.
Table 1
3-Aza-Cope rearrangements of enamines 5 produced via Scheme 2.

# O-Substituted hydroxylamines 4 Configuratio

1 a: R1 = adamantyl; R2 = R3 = R4 = H Z
E

2 b: R1 = adamantyl; R2 = R3 = Me; R4 = H Z
Z
Z
E
E

3 c: R1 = adamantyl; R2 = R3 = H; R4 = Me E
4 d: R1 = adamantyl; R2 = R3 = H; R4 = Et E
5 e: R1 = adamantyl; R2 = R3 = CH2(CH2)3CH2; R4 = H Z
6 f: R1 = adamantyl; R2 = R3 = CH2(CH2)2CH2; R4 = H Z
7 g: R1 = adamantyl; R2 = Me; R3 = Et; R4 = H Z
8 h: R1 = tert-Bu; R2 = R3 = R4 = H Z

E
9 i: R1 = 1,1-dimethyl-3-propyl; R2 = R3 = Me; R4 = H Z
10 j: R1 = 1-methylcyclohexyl; R2 = R3 = Me; R4 = H Z
11 k: R1 = (i-Pr)3Si; R2 = R3 = R4 = H Z
12 l: R1 = (Me)2(tert-Bu)Si; R2 = R3 = R4 = H Z

E
13 m: R1 = Ph2(tert-Bu)Si; R2 = R3 = R4 = H Z
14 n: R1 = benzyl; R2 = R3 = R4 = H Z

E

a Isolated yields after flash-chromatography.
b Yields calculated from 1H NMR of crude reaction mixtures.
c Recovered E-enamine after chromatography.
When the rearrangement of Z-5 is slower, competition from isom-
erisation to E-5 occurs and such enamine accumulates. For the
rearrangement of E-5 to take place heating at above 70 �C (typi-
cally at 180 �C) is now needed [Table 1, entries (E) 2–4, 8, 12,
14]. At that temperature allene 6 is no longer stable and a cascade
of reactions may lead to different compounds through triene 7. For
example if there are no substituents on the a-carbon of the
propargylic unit, a substituted pyridine 8 is formed as shown in
Scheme 3, resulting from elimination of R1OH in the dihydropyri-
dine after N–O bond cleavage [entries (E) 1, 3, 4, 8, 12, 14]. If, how-
ever, R2 and R3 are not hydrogens, then triene 9 is isolated [entry
(E) 2] (cf. Scheme 4).

The oxime allenes 6 are themselves liable to acid-catalysed
isomerisation, when, for example, in prolonged contact with silica
gel at room temperature (as while being subjected to purification),
in which case triene-type 7 is obtained by prototropy. Upon heat-
ing 6 at 180 �C the same isomeric triene 9 as above is obtained as in
Scheme 4, which can be due to the facile formation of an ion-pair
60, followed by attack of the leaving sulfone moiety to the allene
central carbon.

To gain insight into the stereoelectronic influences for the reac-
tion path outlined in Scheme 5, the potential energy surface was
modelled at the B3LYP/6-31G(d) level (Web Table), reaction barriers
being computed from thermal and entropy corrected free energies.
The initial transition state (TS1) involves a zwitterionic product,
and this was modelled with a continuum solvation field applied
(CPCM, specifying water or dichloromethane).11 The subsequent
non-ionic intermediates and transition states were modelled for
the gas phase. We first note that nucleophilic addition by the amine
to the arylsulfonylalkyne is predicted to exhibit a more stable tran-
sition state TS1 (by �1.6 kcal mol�1/water and 0.9 kcal mol�1/
dichloromethane in the solvation free energy) if the developing vinyl
carbanion in the transition state is oriented anti rather than syn to the
nucleophile. The effect arises predominantly from the greater solva-
tion stabilisation in the anti configuration (dipole moment 14.1 D)
compared to syn (dipole moment 11.2 D). This result agrees with
an earlier suggestion by Evans and Kirby12 that such nucleophilic
n of enamines 5 Conditions Product
Yielda (%)

Temp/Time Allene 6 Others

rt/60 h 95b E-5a (5c)
180 �C/15 min — 8a (80)
�20 �C/90 d 91, 99b —
�4 �C/25 d 98, 99b —
rt/48 h 90, 99b —
70 �C/200 h 50, 54b E-5b (15c)
180 �C/15 min — 9b (70)
180 �C/1 h — 8c (80)
180 �C/1 h — 8d (71)
rt/96 h 61, 64b E-5e (28c)
rt/96 h 27, 28b E-5f (70c)
rt/96 h 70, 93b —
rt/72 h 64b E-5h (30c)
180 �C/15 min — 8h (71)
rt/72 h 80, 99b —
rt / 72 h 78, 96b -
rt/24 h 64, 98b —
rt/24 h 65, 68b E-5l (32c)
180 �C/15 min — 8l (88)
rt/96 h 75, 92b —
rt/72 h 60b E-5n (30c)
180 �C/15 min — 8n (77)
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addition does indeed proceed via a vinylcarbanion intermediate in
antiperiplanar fashion. The transition state for Z-5A/E-5A isomerisa-
tion by inversion at the vinyl carbanion centre (TS3) has a free energy
8.1 kcal mol�1 higher than that for TS1/Z-5A. The stereospecific anti-
carbanion is thus presumed to be rapidly and irreversibly quenched
with a proton to produce the Z enamine before any isomerisation to
the syn-carbanion E-5A can occur. This stereochemistry represents a
classical example of kinetic rather than thermodynamic control,
since the alternative enamine E-5 is in fact 9.1 kcal mol�1 more sta-
ble in free energy.

Either enamine now undergoes a [3,3] sigmatropic rearrange-
ment (via TS2) to give 6, the more facile reaction being that
commencing from the less stable Z-5 enamine with a free energy
barrier of 20.2 kcal mol�1 and the less facile from the (more stable)
E enamine, the barrier for which is 27.8 kcal mol�1. The free energy
barrier for double-bond isomerisation of the neutral Z-5/E-5 inter-
mediates (TS4) is too high to compete (free energy barrier
34.6 kcal mol�1, 14.4 kcal mol�1 higher than that for [3,3]-rear-
rangement (TS2) of E-5). A viable mechanism for Z-5/E-5 isomeri-
sation, a process which is in fact observed to slowly take place,
may in fact occur by prior protonation of the enamine on the sulfo-
nyl oxygen, enhancing the electronic push/pull, and reducing the
free energy barrier for double-bond rotation (TS5) down to a more
feasible 20.0 kcal mol�1 (from protonated Z-5). This would allow
Z-5 to isomerise at a similar rate to the competing [3,3] rearrange-
ment. This overall free energy analysis rationalises the experimen-
tal observations that initial product Z-enamine reacts at low
temperatures, whereas the more stable E-enamine has an observa-
ble lifetime, and only undergoes Cope rearrangement at >70 �C.

In conclusion, it has been shown that for low to room tempera-
ture N-oxy-3-aza Cope rearrangements, leading to oxime allenes,
the Z-configuration of the rearranging enaminic double bond
proves to be a critical factor.
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